Therefore, the resonant frequency of this tuned circuit will be appreciably lowered by a slight addition of hand capacity. On the other hand, L_o has much less inductance and is tuned to resonance by a large fixed condenser C_o. The two coils are coupled so that the tube oscillates at the average of their resonant frequencies. This pitch control oscillator is extremely sensitive to changes in hand capacity, but because of the low impedance of L_o-C_o, changes in input capacitance of the tube may be effectively eliminated. Naturally, this stability is an extremely desirable feature in an electronic musical instrument.

The pentode part of V_i acts as a buffer amplifier to further isolate the oscillator from extraneous disturbances. The output frequency is about two hundred kilocycles.

Except for the absence of an antenna coil, the operation of the fixed oscillator V_i is identical with that of the variable oscillator. The outputs of the two oscillators are fed through isolating condensers into three r.f. transformers, which pass or reject harmonics produced by the oscillators. These high frequency harmonics produce corresponding overtones in the beat note and, by controlling these harmonics, distinctive qualities of tone may be produced by the instrument.

The variable control oscillator is identical to the pitch control oscillator, except for the tuned circuit values. The output is passed through two conventional i.f. transformers, T_i and T_o, and then rectified by the crystal diode. R_e. When the transformers are tuned to the same frequency as the oscillator, a maximum voltage difference of about eighty volts exists across R_e. The oscillator frequency is then raised to a point where the voltage across R_e is at half maximum, or forty volts. This provides operation on that portion of the sensitivity curve that results in the greatest change in voltage across R_e for a given slight variation in the oscillator frequency. To take advantage of this maximum sensitivity, the positive end of R_e is placed at a point on the voltage divider R_w-R_e, which is about forty volts above ground. Therefore, the negative end of R_e is at zero volts in relation to ground. With a slight addition of hand capacity to the variable control oscillator, the junction of R_e and C_e will become negative in relation to ground. This negative voltage is used as grid bias to control the gain of the variable mu amplifier tube. A change in the oscillator frequency will vary the grid bias and, therefore, the output of the amplifier. The output of this amplifier is fed directly into the power amplifier and from there into a loudspeaker.

As an electronic instrument using up-to-date circuits and tubes, a Theremin may be constructed at a very nominal cost, and give completely satisfactory performance. In the instrument about to be described, the tone is produced by two radio-frequency oscillators beating at an audible frequency. The addition of hand capacity to the volume control antenna causes a change in the frequency of a third oscillator, V_i. The output of this oscillator is fed through a series of tuned circuits, T_i and T_o, and then rectified. The rectified voltage is used as grid bias to control the gain of a variable mu amplifier tube. A change in the oscillator frequency will vary the grid bias and, therefore, the output of the amplifier. The output of this amplifier is fed directly into the power amplifier and from there into a loudspeaker.

The variable pitch oscillator uses the triode section of V_i and its frequency is determined by two tuned circuits, L_o-C_o, and L_o-C_i. L_o is a variable coil of high inductance, and has only its distributed capacity and a small variable condenser C_o across it.
volume is obtained with the hand about eighteen inches from the antenna. \(R_1 \) is used to set maximum volume.

The power supply uses a gas-type voltage regulator to supply the oscillators and the control amplifier, thereby adding to the over-all stability of the instrument.

As a musical instrument, the Theremin should be as compact and portable as possible. However, a distance of at least eighteen inches should separate the two antennas. The unit pictured is built on a 17 x 7 x 3 inch chassis and the antennas are mounted on the wooden housing, one on each end (see Fig. 1). The pitch control antenna is made of a sixteen-inch length of one-inch brass pipe, and the volume control antenna is made of a 5 x 7 inch sheet of sheet brass. \(C_i \) and \(C_{ii} \) are used to "tune up" the instrument and should be placed on a convenient part of the panel. The unit must be adequately ventilated to prevent an extreme temperature rise that might otherwise result in frequency drift. It is recommended that \(R_{ii} \) and \(R_{ii} \) be mounted above the chassis, to prevent heating of the oscillator components. \(T_i \), \(T_{ii} \), and \(T_{iii} \) are all conventional broadcast i.f. transformers and may be either of the shielded or unshielded type. If unshielded transformers are used, they should be mounted under the chassis and holes drilled for adjusting the trimmer condensers (see Figs. 4 and 5). Placement of parts is not critical, since the oscillators work at low frequencies, and all circuits are of fairly low impedance. The oscillator coils should be carefully constructed however, since these are the "heart" of the instrument. In constructing the pitch control coil assembly \((L_o, L_{ii}, L_{iii})\) a ring with an outside diameter of 1½ inches and inside diameter of 3/8 inch is cut from ¾ inch wood. On

Fig. 2. Cross-sectional details of control coils. Dimensions should be exact.

Fig. 3. Complete schematic diagram for the Theremin. All voltage readings shown were taken with 20,000 ohms-per-volt meter.

RC, R_{ii}, R_{iii} --- 100,000 ohm, 1/2 w. res.

R_{ii}, R_{iii} --- 4700 ohm, 1 w. res.

R_{i}, R_{ii} --- 10,000 ohm, 1/2 w. res.

R_{i}, R_{iii} --- 4700 ohm, 1/2 w. res.

R_{ii}, R_{iii} --- 22,000 ohm, 1/2 w. res.

R_{i}, R_{iii} --- 230,000 ohm, 1/2 w. res.

R_{ii}, R_{iii} --- 130,000 ohm, 1/2 w. res.

R_{ii}, R_{iii} --- 47,000 ohm, 1/2 w. res.

R_{iii} --- 47 megohm, 1/2 w. res.

R_{i}, R_{ii} --- 47 ohm, 2 w. res.

R_{i}, R_{ii} --- 470 ohm, 1 w. res.

R_{i}, R_{ii} --- 100 ohm, 10 w. wirewound res.

R_{i}, R_{ii} --- 10 ohm, 10 w. wirewound res.

C_{i} --- 15 µfd. var. cond.

C_{i} --- 1 µfd. 400 v. cond.

C_{i} --- 20 µfd. 350 v. cond.

C_{i} --- 20 µfd. 450 v. cond.

C_{i} --- 200 µfd., mica cond.

I_{i} --- Jack for external speaker (optional)

L_{i} --- TV horizontal osc. coil (Staewyck LHO 2)

L_{ii} --- 40 t. ± 30 c.c. wire wound over L_{iii} (see test)

L_{iii} --- 40 t. ± 30 c.c. wire wound on 1/2″ form (see test)

L_{iv} --- 30 t. ± 30 c.c. wire wound over L_{iii} (see test)

L_{v} --- 20 t. ± 30 c.c. wire wound over L_{iii} (see test)

L_{vi} --- 40 t. ± 30 c.c. wire wound on 3/4″ form (see test)

L_{vii} --- TV horizontal osc. coil (Staewyck LHO 2 modified per test)

PL --- 0.3 volt pilot light

Skr --- 2″ loudspeaker

Rec --- 1N34 germanium diode

S_{i} --- 5-p.a.t. switch (second harmonic, octave)

S_{ii} --- 5-p.a.t. switch (third harmonic)

S_{iii} --- 5-p.a.t. power switch

S_{iv} --- 5-p.a.t. speaker switch (see test)

F --- 2 amp fuse

CH --- 10 k., 100 ma. filter choke

T --- R_{i}, transformer (see test)

T_{i} --- 465 v, broadcast i.f. trans. with trimmers (see test)

T_{ii} --- Audio output trans., 7000 ohm pol. impedance, Sec. impedance to match speaker voice coil

T_{iii} --- Power trans. 325-0-325 v., @ 100 ma.

V --- @ 2 amps; 6.3 v. c.c. @ 3 amps

V --- 9 v. C tube

V --- 574g tube

V --- 673 tube

V --- 6F6 tube

V --- 6G5 tube

V --- 7T150 tube
this form, L_i is wound. A layer of insulation is placed over L_i and L_o is wound over the insulation. L_i is then placed in the hole in the coil form (see Fig. 2). With L_i in place, the entire assembly is coated with cement or coil dope. This assembly is seen in the upper right-hand corner of Fig. 5.

The same procedure is followed for the volume control coil assembly (L_w, L_i, L_o), but the dimensions are different. L_w is a coil of the same type as L_i, except that enough wire is removed so that its outside diameter is just under $\frac{3}{8}$ inch and its resistance is 30 ohms. The wooden ring for this assembly has an outside diameter of 1$\frac{1}{4}$ inches and an inside diameter of $\frac{3}{8}$ inch.

The fixed oscillator coil (L_o, L_i) is wound directly on a $\frac{3}{8}$ inch slug-tuned coil form. L_i is wound and covered with insulation. L_o is then wound over the insulation.

T_i is wound on a $\frac{3}{8}$ inch wooden form. Both primary and secondary consist of 250 turns of No. 30 wire. The two windings are wound next to each other.

The two pitch oscillator coils should be placed at least six inches from each other and at right angles. This will prevent interaction between the magnetic fields surrounding the coils.

To insure mechanical stability, all leads going to these coils should be solid rather than stranded wire. The antenna connections are brought out to connectors on the top of the chassis. The loudspeaker and pilot light are also connected in this fashion.

To adjust the Theremin, use a voltmeter with an internal resistance of at least 20,000 ohms-per-volt. After the wiring has been checked and the instrument plugged into the line, check that the voltages at the points indicated in Fig. 3 approximate the values given. Remove V_i and touch the grid cap of V_s. A loud hum indicates that the amplifier tubes are working. The unit is now ready to be aligned as follows:

1. Turn R_m to zero volume. Place the voltmeter across R_b and set C_i to minimum capacity. Make sure that the pitch control antenna is connected properly. Start with the slug out of L_i as far as possible and advance the slug until the voltmeter begins to dip. Continue advancing the slug until the voltmeter reaches its lowest point and begins to climb. At this point L_i-C_o is at the same resonant frequency as L_o-C_i and the oscillator is most sensitive to hand capacitance.

2. Now set C_i at half capacity and turn R_b up halfway. Adjust the slug in L_i-L_o until a loud beat note is heard. Continue adjusting until the two oscillators are zero-beating.

3. Set C_i for an audible note. Close S_a and open S_b. Tighten the trimmers on T_b until a marked change in tone quality is heard. T_b is now tuned to the second harmonic (octave) of the fundamental and may be shorted out by simply closing S_b.

4. Close S_a and open S_b. Loosen the trimmers on T_a until a change in tone quality is heard. T_a is now tuned to the third harmonic of the fundamental and may be shorted out by closing S_a. With both S_a and S_b open, the resultant tone will contain both second and third harmonics.

5. Place V_i in its socket and allow it to warm up. Set C_i at minimum capacity and connect the volume control antenna. Place the voltmeter across R_m and adjust L_i until the voltmeter shows the greatest dip. V_i is now oscillating at about 500 kc.

6. Now set C_i at maximum capacity and place the voltmeter across R_m. Adjust T_a and T_b trimmers for maximum voltage.

The unit is now ready to play. The chassises and antennas are mounted in the cabinet. C_i is set for the lowest note that the performer wishes to play. Moving the hand toward the pitch control antenna should raise the pitch. C_b is set so that movement toward the volume control antenna will reduce the intensity of the tone. In playing the instrument, the performer stands about two feet from the pitch antenna, and about 1$\frac{1}{2}$ feet from the volume antenna. The top of the pitch antenna should be at shoulder level. The tone produced is not unlike that of a cello, and when S_a or S_b is open, the tone resembles that of an oboe or English horn. A slight shaking of the hand produces a quivering effect (vibrato) that greatly enriches the tone. S_a may be opened if the performer wishes to leave the power on while not actually playing the instrument.

No special techniques are used in playing the Theremin and anyone who can hum a tune is a candidate for the instrument. As with all musical instruments, practice is necessary to play the Theremin skillfully.

The Theremin is generally considered a musical novelty and there are very few accomplished masters of the instrument. The writer believes that the scarcity of instruments rather than any great difficulty in learning to play is responsible for this situation. The instrument herein described, in the writer’s opinion, is the equal of any in existence, and incorporates added features that make it superior to any that he has seen or heard. Construction of the instrument should present no great trouble to anyone with some knowledge of electronic circuits and construction techniques. Beside the satisfaction of having built a musical instrument, the constructor will enjoy the distinction of being able to “pull music from the air.”