A frequency shifter is an audio signal modifier which shifts the entire frequency spectrum of the applied signal by a given amount. The Model 1630 Bode Frequency Shifter allows the amount of shift to be accurately and continuously controlled over a span of -5000 Hz to +5000 Hz, utilizing voltage and/or manual control. The relationship between the control voltage sum and the amount of shift may be either linear or exponential. Up-shifted and down-shifted outputs, as well as a continuously variable mixture of the two, are available simultaneously and independently. Variable threshold squelch and zero-adjust fine tuning controls are provided.

The Model 1630 Bode Frequency Shifter changes the ratios between the frequency components of an audio spectrum, thus producing a variety of novel sound quality transformations. Applications include a wide variety of tone color modification, P.A. feedback suppression, linear frequency modulation, novel tape feedback effects, and the generation of dynamically varying clangorous tones.

- **Less than 0.1% total hum and noise**
- **VARIABLE THRESHOLD SQUELCH MINIMIZES APPARENT CARRIER BLEEDTHROUGH DUE TO INPUT SIGNAL BACKGROUND NOISE**
- **STATE OF THE ART CIRCUITRY INCLUDES PATENTED VOLTAGE-CONTROLLED BEAT FREQUENCY QUADRATURE OSCILLATOR**
- **Accurately shifts input signals over the audio frequency range of 30 Hz - 16 kHz**
- **Amount of shift is continuously variable from -5 kHz, through zero to +5 kHz**
- **Amount of shift is accurately voltage-variable - either linear or exponential control mode is available**
- **Less than 1% total unwanted modulation and distortion products**

Exclusive distributors:
NORLIN MUSIC, INC.
7373 NORTH CICERO AVENUE, LINCOLNWOOD, ILLINOIS 60646

©1974 MOOG MUSIC, INC.
PRINTED IN U.S.A.
PANEL FEATURES:

The Model 1630 front panel has one signal input jack, three pairs of output jacks and one set of three control input jacks. The signal input is medium impedance (50K ohms) and will accept levels up to +12 dBm. Signals appearing at the output jacks are nominally the same level as that of the input. The upward shifted spectrum appears at the OUTPUT A jack pair, the downward shifted spectrum appears at the OUTPUT B jack pair, and the mixture of the two appears at the MIXTURE OUTPUT jack pair. Each of the control inputs has an impedance of 100K ohms +1%. The nominal range of the control voltage sum is +5V. The AMOUNT OF SHIFT control and the SCALE switch determine the basic amount of shift as set by the panel controls; the SCALE switch also determines whether the relationship between the control sum and the amount of frequency shift is linear or exponential. The SCALE switch has six positions. In the ZERO position, the AMOUNT OF SHIFT rotary control and the control input jacks have no effect. The switch is placed in this position when the instrument is to be calibrated. When the switch is in the "EXP" (exponential) position, the span of frequency shift is 2-2000 Hz and a one volt increase in the control sum doubles the amount of frequency shift. In the absence of external control voltages, the AMOUNT OF SHIFT rotary control covers the entire span. As in other Moog voltage-controlled modules, the effect of the control voltages is added to that of the AMOUNT OF SHIFT control. The remaining four positions of the SCALE switch establish a linear relationship between the control sum and the amount of frequency shift. These positions select +5, +50, +500, or +5000 Hz total amount of shift. In all positions of the SCALE switch, except "ZERO", sweeping the AMOUNT OF SHIFT rotary control through its rotation is equivalent to a 10V change in the control sum. Other panel controls include SQUELCH THRESHOLD, ZERO ADJUST (each with their LED lamp indicators), and MIXTURE. SQUELCH THRESHOLD adjusts the threshold at which the squelch circuit goes into effect. Whenever the level of the input signal falls below threshold, the squelch circuit supresses the output signals. The ZERO ADJUST is used to calibrate the amount of frequency shift prior to use. The LED associated with this control actually blinks once every cycle of frequency shift. Thus, with the SCALE switch in the ZERO position, the ZERO ADJUST control is set until its associated LED blinks very slowly. Finally, the MIXTURE control determines the relative proportions of outputs A and B which appear at the MIXTURE OUTPUT.

APPLICATIONS:

In shifting the components of the input audio spectrum by a given amount, the 1630 Bode Frequency Shifter changes the original ratios between the overtones and other frequency components of the input signal. Rather than being a transposing device, this instrument is a means for achieving an extremely wide variety of tone color modification. Whether the amount of frequency shift is large or small, static or time varying, or whether the input signal is simple or complex, the processed outputs will generally be musically interesting. Here are some typical applications:
1. When the input signal is a quasi-pitched sound, such as that produced by a drum, the frequency shifter will alter the apparent pitch. In the case of a drum sound, varying the amount of frequency shift will appear to change the "size" of the drum. In conjunction with a 912 envelope follower and 911 envelope generator, a trigger occurring at the beginning of each drum sound may result in a rapidly varying "amount of shift" contour, which gives a whole new class of percussion sounds which glide or swoop each time they begin. A drummer may also use a pedal controller, or modulating oscillator, to vary the amount of shift, thus creating radical changes in the processed sound while he is playing.

2. When an audio signal is shifted by a small amount (a few Hz) and then remixed, interesting chorus effects are generated. The two main outputs may be routed to separate listening channels to create novel stereo effects. Modulation of the amount of shift by a slowly varying control signal enhances the richness of sound and feeling of ambience.

3. A pitched sound which is rich in harmonics becomes clangorous when passed through the Bode Frequency Shifter. When the Model 1630 is used with Moog voltage-controlled oscillators, it is convenient to control the amount of shift and the frequency of the input signal with the same control voltage. This arrangement produces a clangorous sound whose relationships between overtones, and therefore its perceived timbre, remain constant as the pitch of the sound is varied. Furthermore, exciting new timbres are created when the oscillator tones are dynamically filtered before being shifted.

4. Using two sine oscillators, one fed to the signal input and the other to a control input, a wide range of frequency modulation is possible. If the amplitude of the control signal is dynamically varied a class of clangorous tones is produced whose overtone strengths constantly vary with time.

5. Feedback in high power public address systems is a severe problem during live performances. A 1630 Frequency Shifter, inserted in the line between the mixer and the power amplifier, shifts the entire spectrum of the signal which drives the speakers. If the amount of shift is set at just a few cycles per second, then the sound appearing at the speakers will appear to be virtually unchanged to the listener's ears, but the regenerative effect, which leads to feedback howl, will be greatly reduced. This application enables microphone gains to be increased by as much as 15-20 dB.

6. The output of a tape recorder may be mixed with its input to produce well known tape echo effects. The 1630 Bode Frequency Shifter, inserted in the line from the recorder's output to input, allows new tape echo effects. These effects are characterized by "spiraling" of the echoes either upward or downward in pitch.

7. When the frequency spectrum of speech is shifted, its quality and apparent pitch are drastically altered without significantly affecting the intelligibility.
SPECIFICATIONS:

SIGNAL INPUT
Nominal Input Impedance: 50K ohms
Nominal Input Level: +2 dBm
Maximum Input Level: +12 dBm
Frequency Range: 30 Hz-16 kHz

SIGNAL OUTPUTS
Nominal Output Impedance: 1 ohm (outputs A and B) 600 (mixture output)
Nominal Output/Input Gain: Unity
Maximum Output Level: +12 dBm
Total Unwanted Distortion and Modulation Products ($E_{IN} = 2$ dBm): Less than 1% of Output
Total Hum and Noise: Less than 0.1% of Output

CONTROL INPUTS
Number: 3 (summed)
Input Impedance: 100K + 1%
Control Voltage Sum/Amount of Shift Scale Factor: A one volt increase in the control voltage sum is equivalent to one major division on the AMOUNT OF SHIFT control.
Scale Factor Accuracy: 1%

OTHER PANEL FEATURES
AMOUNT OF SHIFT CONTROL: Provides manual control of amount of shift equivalent to 10 volt change in control voltage sum.
SCALE Switch: Selects exponential or one of four linear control scale factors. Also disables control voltage sum for calibration purposes.

SQUELCH THRESHOLD Control: Determines level of input signal, below which outputs are silenced.
SQUELCH THRESHOLD Light: Goes on when input is above threshold.
ZERO ADJUST Control: This control is used for initial calibration of instrument.
ZERO ADJUST Light: Blinks once for every cycle of carrier signal, thereby facilitating visual calibration.
MIXTURE Control: Determines ratio of levels of up- and down-shifted outputs that appear at MIXTURE output.

MECHANICAL PACKAGE:
Panel Size: 8-3/4" high x 6-3/8" wide
Depth Panel: 6-1/2" excluding connector
Rear Connector: Printed circuit card contact extension 3.36" wide. Mates with standard 22 pin connector (.156 centers)

Pin Assignments:
(2) Ground
(4) +15 volts input, 150 ma nominal, regulated to 0.1%
(7) Quadrature carrier outputs:
(8) +10 dBm
(9) Control summing point: Input impedance is less than 1 ohm. 10 ua is equivalent to one major division on AMOUNT OF SHIFT control.
(19) -15 volts input, 150 ma nominal regulated to 0.1%